题目描述
A prime number (or a prime) is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers.
Now lets define a number N as the supreme number if and only if each number made up of an non-empty subsequence of all the numeric digits of N must be either a prime number or 1. For example, 17 is a supreme number because 1, 7, 17 are all prime numbers or 1, and 19 is not, because 9 is not a prime number. Now you are given an integer N (2≤N≤10100), could you find the maximal supreme number that does not exceed N?输入
In the first line, there is an integer T(T≤100000) indicating the numbers of test cases.
In the following T lines, there is an integer N (2≤N≤10100).输出
For each test case print "Case #x: y", in which x is the order number of the test case and y is the answer.
样例输入
26100
样例输出
Case #1: 5Case #2: 73
题解
通过打表发现满足条件的最大数为317
坑点在于石油大把10^100写成10100代码
#includeusing namespace std;#define rep(i,a,n) for(int i=a;i #define PLL pair #define PI acos(1.0)#define eps 1e-6#define inf 1e17#define INF 0x3f3f3f3f#define MOD 998244353#define mod 1e9+7#define N 1000005const int maxn=10000;// int prime[1000100]; //打表程序// bool book[1000100];// int top;// void isprime()// {// memset(book, true, sizeof(book));// book[1] = false;// for(int i=2;i = 1000;i--)// {// if(book[i])// {// int temp = i;// int a = temp%10;// temp/=10;// int b = temp%10;// temp/=10;// int c = temp%10;// temp /=10;// int d = temp;// printf("%d %d %d %d\n",d,c,b,a);// if(book[a] && book[b] && book[c] && book[d] && book[d*10+c] && book[d*10+b] && book[d*10+a] && book[c*10 + b] && book[c*10 + a] && book[b*10 + a] && book[d*100 + c*10 +b] && book[d*100 + c*10 +a] && book[d*100 + b*10 +a] && book[c*100 + b*10 +a])// {// printf("%d\n",i);// }// }// }// }int a[100] = {1,2,3,5,7,11,13,17,23,31,37,53,71,73,113,131,137,173,311,317,10101};int main(){ int n; int t; sca(t); int cas = 1; string s; while(t--) { // sca(n); n = 0; cin>>s; if(s.length()>4) { printf("Case #%d: %d\n",cas++,317); continue; } rep(i,0,s.length()) { n = n*10+s[i]-'0'; } rep(i,0,21) { if(n